

3 Reasons Why Your Cloud Architecture Needs a Time Series Platform

Thom Crowe, Community Manager InfluxData As you adopt:

DevOps Docker Kubernetes

You're going to need better monitoring

What You Will Need To Monitor

- DevOps Toolchain(s)
- Containerized Applications
- Containers
- Kubernetes Clusters (nodes, pods, etc)

Kubernetes Adoption is Growing

Why Care About Better Monitoring

UPTIME: High uptime requires sub-second visibility into architecture

COMPLEXITY: Ecosystems of microservices requires cross-domain visibility

SCALE: Legacy systems can't handle the volume of metrics generated

Emergence of Time-Series Platforms for Advanced Monitoring

New Workloads of Metrics and Events

Explosion of Connected Things

Instrumentation of the Virtual World

Consolidating of Metrics/Events Data

What makes Events and Metrics Unique?

- o All time-stamped data
- Generated in regular and irregular periods
- Huge volumes of data

What makes a **Time Series** platform different?

- Ingestion of large volumes of metrics
- Real-time queries of large data sets
- Rapid eviction and transformation of data
- Down sampling of high precision data
- Storage optimization and compression

The New Architectural Approach

SQL	Search	Big Data	Time Series
Orders and Order Lines	Logs and web pages	Volume and variety	Metrics and Events
ORACLE	splunk	Chedoop	influx data
10 © 2019 InfluxData. All rights reserved.			influxdata

What is InfluxDB?

Platform Strategy: Be The Platform of Choice for All Metrics and Event Workloads

InfluxDB's TICK Stack

Telegraf: Agent for Collecting and Reporting Metrics and Events

- Telegraf is plugin-driven and has the concept of 4 distinct plugin types to collect and report metrics:
- Input plugins collect metrics from the system, services, or 3rd party APIs
- Processor plugins transform, decorate, and/or filter metrics
- Aggregator plugins create aggregate metrics (e.g. mean, min, max, quantiles, etc.)
- Output plugins write metrics to various destinations
- Over 200 plugins, more added every few weeks

InfluxDB: The Modern Time Series Database

- Time-series database built from the ground up to handle high write & query loads
- Custom high performance data store written specifically for timestamped data, (DevOps monitoring, application metrics, IoT sensor data, & real-time analytics)
- Conserve space on your machine by configuring
 - to keep data for a defined length of time
 - automatically expiring
 - deleting any unwanted data from the system
- Offers a SQL-like query language for interacting with data

Kapacitor: Real-time Streaming Data Processing Engine

- Native data processing engine
- Processes both stream and batch data from InfluxDB
- Plug in custom logic or user defined functions to
 - process alerts with dynamic thresholds
 - match metrics for patterns
 - compute statistical anomalies
 - perform specific actions based on these alerts like dynamic load rebalancing
- Integrates with Slack, HipChat, OpsGenie, Alerta, Sensu, PagerDuty, and more

Chronograf

- Configuration
- Dashboards
- Visualization
- Data Explorer
- Templates & Libraries
- Alerting & Automation

InfluxDB can monitor Kubernetes, Docker and the Apps

Telegraf is deployed as a DaemonSet on the node and as a sidecar on the pod(s) Benefits

- Deploy Telegraf as a Daemonset for the node and a sidecar for pods
- Get consistent metrics out of Telegraf for the nodes and the pods
- Implement push style metrics for the whole cluster

Use InfluxDB to monitor the K8s cluster (master, nodes, and pods) to gain:

- Consistency in metrics
- Long-term storage and HA
- Enable push-style metrics

🚳 influxdata'

InfluxDB can co-exist in a Prometheus Ecosystem

BENEFITS

- Build on your investment in Prometheus
- Telegraf scrapes Prometheus endpoints
- Get full functionality of Telegraf
- Use Prometheus style metrics when required

Complement your Prometheus investment with InfluxDB to gain

- Long Term storage and HA
- Add 'push' style metrics to Prometheus's 'pull' style

I have Prometheus, why do I need InfluxDB?

Active Full Stack Monitoring with InfluxDB

Driving K8s with InfluxDB

Helm Charts

Deploy Telegraf as a DaemonSet to start monitoring nodes, pods and containers.

Service Operator

- Operators simplify deployment and backup of InfluxDB OSS using familiar *kubectl* commands.
- Hashicorp Terraform module(s)
- InfluxDB Enterprise Terraform Module for AWS is available now

In a nutshell..

If you want a single platform for metrics and events in your company, then you'll need to supplement Prometheus to deliver.

InfluxDB works with both K8s and non-K8s sources to deliver full stack monitoring.

Documentation

Landing Page

Thank you

https://www.influxdata.com/developers/

Act in Time