
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

EBOOK

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The New Mobile
Development Landscape

Table of Contents

Progress 2

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Introduction / 3

Mobile Development The Early Days / 4

Mobile Development Today / 5

 Native Development / 6

 Browser Development Evolves / 8

 Mobile Application Development Platforms (MADP) / 11

 Hybrid Mobile Apps / 14

 JavaScript-Driven Native Apps / 18

 Other Types of Native Apps / 22

Making The Transition / 23

Testing Your Apps / 24

Building Your Mobile App Back-End / 25

Conclusion / 26

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 3

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

If you poke around on the Internet, you’ll find hundreds or even thousands of frameworks
and platforms designed to make platform mobile development easy. There’s almost too many
of them to keep track of, and nobody knows which ones are the best, and which ones are
worthless. If you’re part of a one to five-person development shop, you can afford to play
around at the options to see which works best for you and your apps, potentially even
switching approaches between apps.

Larger development shops have to think big; the decisions they make around development
approach and platform or framework selection have a long term impact on the cost and
effectiveness of their development effort. Changing course months or years later means
considerable expense migrating off of a flawed or abandoned platform to the shiny new
approach. Development organizations must be smart, making the right choice at the app’s
creation, knowing that the approach they’ve selected works for the long haul.

We’ve created this ebook to help you make smart choices about how you build
modern mobile apps.

Note: To avoid any hint of favoritism, frameworks, platforms and tools are listed in alphabetical order

throughout this publication. We’ve highlighted a sampling of options, not even trying to present

a complete representation of the available choices.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 4

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Mobile Development,
The Early Days
In the old days, which really wasn’t that long ago, developers had limited
options: build web apps or native apps.

For web apps, developers used:
• Whatever tools they used to code their desktop web apps.
• Responsive Web Design to build web apps that rendered well on

desktops and mobile devices.
• Specialized frameworks like Kendo UI® and jQuery Mobile to make

mobile web development easier or mobile apps prettier.

For native apps, developers had limited options; they could:
• Code mobile apps using the shallow list of languages supported by the

target mobile platform (Java for Android, Objective C for iOS, and C#,
Visual Basic, and JavaScript for Windows Mobile).

• Use the development and debugging tools provided by the mobile
platform vendors.

That was pretty much it.

For devices, the mobile space was much more fragmented, offering users a
wide variety of devices to choose from: Android, BlackBerry, Firefox OS, iOS,
Symbian, WebOS, Windows, and probably a few others.

Testing mobile apps was expensive and time-consuming. To account
for the variety of devices and form factors, Quality Assurance (QA)
departments needed to test applications on each manufacturer-provided
device emulator or simulator, plus any physical devices lying around the
office. Development organizations bought at least one of each popular
device, and used the automated testing frameworks provided by the
device platform vendor. It wasn’t long before third-party and open-source
testing solutions appeared; cross-platform test frameworks and device lab
solutions that made mobile app testing better.

Before long, organizations started looking for economical ways to deliver
apps for multiple platforms simultaneously (from the same code-base).
That led to the commercial development of Mobile Enterprise Application
Platforms (MEAP), Mobile Consumer Application Platforms (MCAP),
and finally, a consolidation of both into Mobile Application Development
Platforms (MADP). The community responded as well, delivering cross-
platform tools like the popular Apache Cordova framework, Appcelerator
Titanium, and many others.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://en.wikipedia.org/wiki/Responsive_web_design
https://www.telerik.com/kendo-ui
http://jquerymobile.com/

Progress 5

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Mobile Development Today
Today’s developer has many options for building mobile apps. Native
and web are still viable options, but other variants exist as well. Users also
have a lot less choices, meaning less platforms for developers to worry
about as the market whittled down to only two choices: Android and iOS.
In this section, we’ll outline the options and explain how they
stack up for developers.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 6

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Native Development

Native apps are still the best apps you can deliver to mobile devices and
mobile device users. Unfortunately, native development is still pretty hard.
For native apps, APIs exposed by the device’s system software enable
these apps to leverage all the capabilities the mobile device offers - with
no compromises, so there’s a lot of good reasons for building native apps.
There are a lot of good arguments for options beyond native as well, so
don’t operate under the premise that all mobile apps must be native apps.

What you’ll see in later sections of this publication is that many of the
mobile development options available today enable you to use skills
developers have with other languages (such as JavaScript and its variants,
or C#), or allow developers to build an app that runs well on multiple
platforms (which today essentially means Android and iOS plus possibly
Windows). That’s not possible using the native platform tools and
languages. You could build a development team that has experience with
both Android and iOS development (Java or Kotlin and Objective C or
Swift), but that’s just not likely. The native platforms are so complicated,
the suite of APIs and UI components so different, that you’re much better
off building separate teams for each target platform. That means dealing
with two different toolsets, languages, build processes, and more. Mobile
app UI controls and themes vary as well across platforms, so you’ll likely
need to design two similar, but different, UIs for your app. Not only is this
cumbersome, it’s expensive as well.

From a tooling standpoint, native developers primarily use the free
development tools provided by the platform vendors. This means
Android Studio for Android developers and Xcode for iOS developers.

There are quite a few third-party Integrated Development Environments
(IDE) for Android and iOS development. Many on the Android side only
handle a subset of the requirements for Android developers.
On the iOS side, JetBrain’s AppCode is a popular, capable IDE for iOS
development (macOS too).

Language options for native mobile development have expanded a bit.
Where Android developers primarily used Java for their apps, they could
also delve into C and C++ when they needed higher performance or
needed to code closer to the hardware. Google recently embraced Kotlin
as an alternate language option for native Android apps as well. The Kotlin
team claims Kotlin is 100% interoperable with Java, so you can call Kotlin
code from Java and Java code from Kotlin.

For iOS and macOS developers, Apple released the Swift programming
language in 2014. Swift is a modern programming language (unlike
Objective C which is much older than Java and even JavaScript) with some
pretty cool features. For new developers, Swift offers an easier learning
curve than Java or Objective C, making it easier for developers to come
up to speed. The good news is that these language enhancements don’t
create much of an issue for existing developers, it’s easy to switch between
languages (in separate source files) within the same app.

As more third-party libraries became available for iOS apps,
managing dependencies became a problem, so the market responded
with the introduction of several dependency managers like
CocoaPods and Carthage.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://www.jetbrains.com/objc/
https://cocoapods.org/
https://github.com/Carthage/Carthage

Progress 7

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Reasons to Build Native Apps
• Native apps, when coded correctly by an experienced

developer, deliver the fastest apps.
• Native apps can do the most things on any mobile device

(access to any native API).
• Native apps are the least risky path to users through native

platform’s app stores.

Reasons Not to Build Native Apps
• Native apps are expensive to build and maintain.
• Native apps require skills unique to the target platform.
• Experienced native developers more expensive

than web developers.

Swift Beyond iOS and macOS When Apple released the Swift

language, many saw the language as a way to enable development

of more than iOS and macOS apps. Swift has some cool features

and Apple’s full backing, so many in the industry started looking for

more places to use it. Teams quickly started thinking about writing

cross-platform development, building Android apps in Swift. IBM

even enabled Swift support in their Bluemix cloud offering. Due to

Swift’s popularity, and the amount of skilled resources in the market,

look to see the language popping up in unexpected places. Not much

happened, Swift hasn’t yet earned a good reputation outside of iOS

and macOS apps.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://github.com/apple/swift/blob/master/docs/Android.md

Progress 8

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Browser Development Evolves

In the early days of mobile, the mobile browser worked; it was able to
render web pages and web apps on mobile devices, but the limited screen
real estate, cumbersome touch interactions, and the reduced capabilities
of the device (compared to desktops and laptops) affected performance
and user experience. Browser users and app developers wanted the
browser to be able to leverage the sensors and other capabilities of the
mobile device. Apple expected that the browser would deliver app-like
experiences for end users, but the market proved they were wrong.

Device manufacturers and the community responded, delivering better
performance and libraries that extended web apps more easily into the
mobile space. The browser got access to the camera, sensors, and other
aspects of the device, and rendering engine performance increased.
The community delivered mobile-friendly frameworks that enabled
developers to more reliably recognize gestures, exposed finger-friendly
UI elements on mobile devices, and reduced the work developers had
to do to deliver web apps for desktop and mobile simultaneously.

Reactive Frameworks

In the web applications of old, developers wrote a lot of code to connect
one or more data sources to the app’s UI. This code had to deal with
creating the data model, reading and writing to storage, and updating the
UI whenever the data changed. Now we have reactive frameworks and web
application frameworks (HTML, JavaScript, and CSS) that connect an app’s
UI with its data.

In 2013, Facebook open sourced the React framework, a framework
Facebook used to build its own web applications. Developers use React
to create web applications coded primarily in JavaScript. The web app’s
index.html file bootstrap’s the React framework, and from that point on,
the app’s JavaScript code handles creating and maintaining the app’s UI.

React delivers a syntax extension to JavaScript called JSX that enables
developers to craft an app’s HTML UI elements in JavaScript (weird,
right?). This approach gives developers a unique way to bundle their UI
components’ HTML, styling and interaction logic all in JavaScript. A React
application’s JavaScript code doesn’t look like regular JavaScript code
as JSX enabled HTML elements to be embedded in the JavaScript code
without any special formatting or delimiters.

React and the other frameworks discussed in this section deliver
JavaScript-driven web applications. This approach is becoming the norm
for modern web development. If you’re not learning them now, you’re
already behind the curve.

Facebook also produces React Native, the same React framework running
on mobile devices in a native application shell. React Native applications
use reactive development principles, but with native UI elements instead
of HTML. You’ll learn more about React Native in a later section
of this publication.

Another popular reactive framework is Vue.js. This community-driven
framework describes itself as “An incrementally adoptable ecosystem that

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://vuejs.org/

Progress 9

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

PWA App Shell

CacheNetwork

Static
Elements

Request &
Fetch

Dynamic
Elements SERVICE

WORKER

scales between a library and a full-featured framework”, which means you can
add Vue.js to a part of your app and expand as needed from there.
The framework is unique in that it was created by a single person (Evan You)
and community financial sponsorship enables him to work full time on the
framework; as long as the framework remains popular, Evan has a full-time job.

An alternate option for JavaScript-driven web development like React and
Vue.js is SAP’s openUI5 framework. openUI5 is the open-source version of SAP’s
UI5 framework SAP uses to deliver the UI for many of the enterprise applications
they deliver to customers.

Each of these frameworks enables you to:
• Write your web applications using primarily JavaScript with little HTML.
• Create reusable UI components you’ll use to assemble your app’s UI.
• Easily bundle your app’s UI elements with its JavaScript code, and share

them across applications.

 Progressive Web Applications (PWA)

We already know that with UI frameworks and reactive apps, mobile apps can
look and feel like native mobile apps. One last piece is needed to make the
mobile browser a first class citizen for mobile apps, developers need a way to
make web applications act more like native apps. To be fully effective on mobile
devices, web apps should:

• Install like a native application on the device’s home screen.
• Do things in the background (like synchronize data with back-end servers).
• Be capable of receiving and processing push notifications.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://openui5.org/

Progress 10

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

You could always add a web URL as a shortcut on your desktop,
a feature that was available in early versions of Android and iOS.
The web manifest standard made it easy for a developer to define
parameters for how the home screen icon is added (for example,
the image file and title to use for the home screen icon, and
whether to render the browser chrome for the app).

The Service Worker API enables web applications to register a chunk of
JavaScript code that runs in the background, enabling synchronization
with back-end data sources, processing push notifications, and even
enabling an offline mode for the application by caching resources so
they’ll be available when there’s no network connectivity.

These capabilities bundle together to deliver what Google calls Progressive
Web Apps (PWA). You can find a more thorough description in
Progressive Web Apps: Escaping Tabs Without Losing Our Soul. Google
added support for PWA to the Chrome browser on Android, and Apple
only recently added support for a subset of PWA features to the Safari
browser on iOS. Microsoft offers full support for PWA in the Edge browser,
and they’re taking the extra step to scour the Internet looking for PWA and
adding them to the Windows App Store (making it easy for Windows users
to find and install these apps).

PWAs are a game changer for mobile users, making web apps work like
native apps (although with limited access to native APIs). Most popular
interactive or data-driven web applications are in the process of, or will be,
enhanced to use PWA features very soon. You’re still going to need mobile
apps to interact most effectively with your users, but PWA gives you a way
to deliver a much more robust experience for users who haven’t, or won’t,

install your mobile app. For some apps, PWA gives developers a way to skip
native apps altogether, and deliver all of their app functionality via HTML
or JavaScript-driven web development.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

Progress 11

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Mobile Application Development
Platforms (MADP)

The mobile platform space exists because many development organizations
(mostly enterprises) needed a way to minimize their costs of building mobile
apps for Android and iOS. Most platforms consist of multiple components:

• On-premises or cloud-based server offering that manages
authentication, connectivity to back-end data sources, data
synchronization, and more.

• Browser-based, or locally installed proprietary development
environment; typically a robust drag and drop app designer, often
running in the browser.

• (optional) Runtime container, an execution environment for the
meta application created with the platform’s proprietary
development environment.

Where these platforms were the only way to build cross platform mobile
applications, there are now many open-source and commercial cross-
platform development offerings that eliminate the need for a formal
platform. With all the mobile-optimized cloud service offerings available from
Amazon, Google, Microsoft, and others, there’s little need for proprietary
development tools tightly coupled with proprietary back-end services.

With the wide array of options available to the professional mobile developer,
mobile platforms have morphed into tools primarily used by enterprises to
enable non-developers (what’s commonly known as a Citizen Developer) to
build mobile apps. The drag and drop nature of MADP development tools
coupled with the data integration capabilities of the server process enables
non-developers to easily ‘draw’ app UIs (using drag and drop components),

wire UI elements to data, connect screens together for navigation, control
access to data based on user credentials, and more.

The typical MADP produces an app delivered in one or more formats:
• Most deliver web applications which run seamlessly on desktop and

mobile browsers.
• Few platforms deliver native mobile applications by generating native

code for the selected target platforms. These applications are rarely
small, fast, tightly-coded native apps, instead they’re bloated with
all of the code needed to translate the designed app, connections to
back-end data sources, authentication, and more, into a native app.

• Most platforms offer the ability to generate a web application that
executes in WebView (basically a browser window) inside a native
application. The most popular approach uses the Apache Cordova
framework to deliver the native app running the
generated web application.

• Many platforms generate a meta application (typically an XML or JSON1
file ‘describing’ the application) which executes in a proprietary runtime
container. The container parses the app’s metadata, then generates
the application UI at runtime using either proprietary or target
platform-specific native UI elements. This approach essentially gives
you native applications without writing any native code. Unfortunately,
these applications can’t deliver true native UIs as the app can only

1 Pronounced just like the person’s name (Jason), not “j-son” with a pause in the middle.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 12

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Authentication

Data Synchronization

Transactions

API Calls

On-premises, or in the Cloud

Directory Application Server

Database ServerMADP Server

DEVELOPER'S WORKSTATION

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 13

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

support the UI capabilities exposed through the platform, and may omit
native controls supported by the mobile device.

• A small number of platforms generate code in a single development
language (like Java, for example), then deploy the compiled application
along with the required language runtime environment as the mobile
app. These bloated monstrosities do enable you to write one app and
run it on more than one target platform, but should only be considered
as a last resort.2

Reasons to Invest in a MADP
• You need to accommodate non-developer types who want

to build mobile apps for their business unit or team.
• You want to use a consistent approach for all mobile apps.
• Your apps aren’t that complicated, so MADP is enough to get

the job done.

Reasons Not to Invest in a MADP
• Vendor lock-in, when the platform vendor disappears, you

may no longer be able to use the app.
• Not able to accommodate all of your application

requirements due to restrictive capabilities in the platform.
• When app performance matters.

2 For example when you run your business on a commercial software package, and the vendor’s
mobile platform is the only way to get a mobile app that works with the software application.

Relying on Apache Cordova As mentioned, the most common

way MADP delivers mobile apps is as a web app running inside the

Apache Cordova runtime container. These are web apps that provide

access to native application capabilities (access to native APIs and

other native apps running on the device) through plugins, and a

Native/JavaScript bridge provided by the Cordova platform. There

are risks here that your application may suffer from performance

bottlenecks. This is because hybrid mobile applications are rendered

in a web view, similar to the Android and iOS device's web browser.

Every device, platform and operating system version handles the

processing of web views differently, creating inconsistencies in

performance and user experience.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 14

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Mobile Device

Native Application

Web View

Native APIs

Device OS

HTML
File(s)

JavaScript
File(s)

CSS
File(s)

Other
Content

Plugin 1
JavaScript
Interface

Plugin 2
JavaScript
Interface

Plugin 1
Native
Interface

Plugin 2
Native
Interface

Plugin 3
JavaScript
Interface

Hybrid Mobile Apps

For a long time, the most common alternative to building native mobile
apps was hybrid mobile applications. Hybrid apps are web applications
packaged and deployed in a native application runtime container. The
application UI renders in a WebView (a native component that essentially
exposes a browser view in a native application) and developers code the
application’s business logic using JavaScript. The first approach to this was
created in 2008 as PhoneGap3 (by a company later purchased by Adobe)
and renamed to Cordova when Adobe donated the project to the Apache
Foundation as Apache Cordova.

The web applications running in the Cordova container aren’t limited to the
things web applications can do in the browser. One of the core components
of Cordova is a JavaScript to native bridge that enables developers to
access native capabilities (like native client-side APIs and hardware such
as sensors and the camera) via a web application’s JavaScript code. While
this isn’t a unique capability, Cordova was one of the first implementations
of this in a popular framework for mobile apps. To simplify implementation
of this, the Cordova team publishes a public plugin specification and a set
of core plugins exposing a common set of capabilities. The open plugin
specification enables developers to easily build custom plugins for internal
use or public consumption, and drove the community to deliver
almost 4,000 plugins.

3 PhoneGap still exists today as Adobe’s distribution of Apache Cordova. Adobe added
some additional capabilities to Apache Cordova for their version of the distribution and uses
PhoneGap in several of their commercial products.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://phonegap.com/
http://cordova.apache.org/

Progress 15

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Hybrid apps at their core are web apps, so they won’t have native
application UIs, and native UI performance. This was a problem years
ago when Google used a different rendering engine for the WebView
component and Apple deliberately limited performance in the iOS
WebView. Since then, Google and Apple eliminated those bottlenecks,
so life’s much better now.

Cordova simply manages the packaging and rendering of web content
in a native app, so there are no Cordova UI components to use. To
accommodate mobile developers who don’t want to roll their own UI
libraries, the community responded with several open-source and
commercial UI frameworks for hybrid applications. These frameworks
(like Framework 7, Ionic, Kendo UI, Onsen UI, and more) give web
applications a native look and feel, tricking users into thinking they’re
using a native app. They’ll notice a slight performance decrease, but the
web app will act and look like a native app; for many apps, users won’t be
able to tell the difference.

You may be asking why technologies like NativeScript®, React Native,
and Xamarin aren’t mentioned here, that’s because they’re not hybrid
frameworks; they’re covered in other sections a little later. These
frameworks create native apps with native UIs, there’s nothing
hybrid about them.

Ionic and Onsen UI are unique in that they both include tooling that
enables them to deploy on top of Apache Cordova. They’re both
supporting Progressive Web Apps as an alternate deployment mechanism,
which will become more important later in the publication.

Apache Cordova is the most common approach for building hybrid apps;
you’ll find many enterprise and consumer apps built with the framework.
Most MADP offerings even run Apache Cordova under the covers. Cordova
was so good at what it did that it was only recently that competing
frameworks appeared4 .

Predicting the Death of Apache Cordova

When the PhoneGap project launched, the project team stated “the
ultimate purpose of PhoneGap is to cease to exist.” The team saw
themselves fixing a problem that eventually wouldn’t exist anymore.
The market demanded the ability to easily (and inexpensively) build
cross-platform mobile apps and expected that the capabilities exposed
through the mobile browser would eventually match the capabilities
available to most native apps.

Remember, when Apple launched the iPhone, they expected users would
never need anything more than browser apps (except, of course,
for the apps produced by Apple). When Apple’s customers demanded
more, Apple unexpectedly found themselves needing to build an app
store and expose the iOS APIs for external developer use. That (late)
decision made a lot of money for app developers, but it’s definitely
not what Apple expected.

4 Ionic recently released the Capacitor framework noted on the GitHub project page
as "an eventual alternative to Cordova"

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://framework7.io/
https://ionicframework.com/
https://www.progress.com/kendo-ui
https://onsen.io/
https://www.nativescript.org/
https://facebook.github.io/react-native/
https://visualstudio.microsoft.com/xamarin/
https://capacitor.ionicframework.com/

Progress 16

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

As expected, the mobile browser, over time, began exposing native
capabilities to web applications. Soon, developers were able to build
web apps that determined the device’s orientation using the internal
accelerometer, determined location using the device’s internal GPS radio,
even interacted with the device camera. The (now) Apache Cordova
team’s prediction no longer seemed so far fetched.

Fast-forward to today, and the availability of PWA; with this capability,
and other enhancements added to the mobile browser, one of the main
use cases for Cordova apps no longer exists. In December 2017,
the Cordova team deprecated many of the core Cordova plugins since
the native WebView used by all Cordova apps now supported the
capabilities exposed by the plugins. Additionally, Apple added support for (a
subset of the capabilities of) PWA in the Safari browser in iOS 11.3.5

In the early days, the Apache Cordova project had the support of many well
known companies (Adobe plus Google, IBM, Intel, Microsoft, Mozilla, Ubuntu,
pretty much everybody in the mobile hardware space except for Apple).
The big guys (Adobe, Google, IBM, and even Microsoft) had dedicated
teams working on the project, anywhere from 6 to 10 people at a time.
Google did a lot of work to ensure the Apache project’s success on Android.
IBM (plus SAP, Oracle, and many others) built mobile development
platforms around Apache Cordova. Microsoft built a capable suite of tools
for Cordova developers in the Tools for Apache Cordova (TACO)
add-in for Visual Studio. Intel even built a robust IDE for Cordova
development called XDK.

5 Progressive Web Apps on iOS are here - Medium.com Article by Maximiliano Firtman

Over time, corporate involvement in the project waned. Google, IBM, and
Microsoft reduced the number of resources dedicated to Apache Cordova.
Intel disbanded their team and shutdown the XDK project.
Apache Cordova continues to be supported primarily by Adobe, with help
from the open source community.

Apache Cordova is still a popular, seasoned, reliable framework for enabling
web developers to write mobile apps. The existing UI frameworks enable
developers to build hybrid apps that look and act like native apps, so for
many enterprise and consumer mobile apps, Cordova is a great option to
use. As you’ll see in subsequent sections, the mobile development world
is migrating to other, more robust approaches. An existing investment
in hybrid apps is still worthwhile, but know that you should already be
retooling for the new mobile development world we live in. Read on to
learn more. We do not recommend starting new projects or using mobile
platforms or tooling with a Cordova framework dependency.

Ionic Saves Hybrid

With all that’s been said so far about the Cordova project’s impending doom,
you’re probably surprised to see the heading for this section. The Ionic
framework is a very capable framework for building hybrid applications.
Originally built on top of Angular, the framework offers robust command-
line tools, flexible UI components (HTML-based), and is easy to learn.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 17

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The Ionic team kept their eyes on the market and noticed that mobile
development was trending toward web standards. To accommodate
this, Ionic started moving away from Angular, migrating their existing UI
elements to web components instead. This change enables developers
to use the Ionic UI components in their web and hybrid applications,
extending their reach. In early 2018, the Ionic team announced a "built
from the ground up" hybrid mobile app container called Capacitor. Ionic has
described the project as an "eventual alternative to Cordova" but as of the
date of this publication, has not released the 1.0 version. Ionic is betting
on web development standards, and hedging their bet by bringing to
market a modern take on the hybrid approach.

Reasons to Build Hybrid Mobile Apps

• Hybrid offers a quick and easy way to deploy a web app
as a native app.

• Hybrid offers the easiest way for web applications to
access native APIs.

• Hybrid delivers app store distribution for web applications.

Reasons Not to Build Hybrid Mobile Apps
• PWA technology can do most of what Hybrid Mobile technology can do.
• JavaScript-driven native apps deliver more of what mobile developers

want, building native mobile applications using web technologies.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://github.com/ionic-team/capacitor

Progress 18

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Java Script Virtual Machine

Mobile Device

Native Application

Native APIs

Device OS

UI
Markup
File(s)

JavaScript
File(s)

CSS
File(s)

Other
Content

Plugin 1
JavaScript
Interface

Plugin 2
JavaScript
Interface

Plugin 1
Native
Interface

Plugin 2
Native
Interface

Plugin 3
JavaScript
Interface

JavaScript-Driven Native Apps

If you’ve gotten this far, you know that ultimately you should deliver native apps
to your mobile app users. Native apps deliver the best user interfaces, and the
best user experience (performance, the most capabilities, the most modern
features of the target device) when written by experienced mobile developers6.
With everything that’s been said so far about the difficulty and cost of building
native applications, how do you cost effectively build native applications for
multiple target platforms? JavaScript-driven Native (JSN) apps!

JavaScript-driven native apps are native mobile applications coded using web
technologies, primarily JavaScript (or its variants - more on that in a bit; we’re
just going to refer to those languages as JavaScript for now). With JSN apps, an
app’s UI and business logic are coded in JavaScript, but the app renders a native
application UI. The UI may have some HTML in it, but that’s not the primary
source for its UI.

At runtime, here’s what happens:

1. The native application launches and completes its normal
startup operations.

2. The app passes control to the application’s JavaScript code which
executes in a JavaScript runtime process within the app.

6 Anyone can download the native development tools and build an app for Android or iOS; that
doesn’t mean the app will be any good. Mobile development is complicated, and it takes a while to
get the skills you need to deliver a sophisticated app that meets modern user expectations.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 19

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

3. The JavaScript code in the app uses the app’s JavaScript/Native
bridge (just like what you’d find in an Apache Cordova app) to
create native UI components which are rendered by the native
part of the application.

4. The app’s JavaScript code continues to run, processing user input,
manipulating screens and data, until the user closes
the app.

Since JSN apps are native apps at their core, there’s no issue deploying apps
through public or enterprise app stores. These apps don’t suffer from the
performance issues that sometimes plague web or hybrid applications, so even
savvy users won’t likely know it’s JavaScript code running under the covers.

There are really only two leading JSN options popular today:

• NativeScript

• React Native

We’ll talk more about each in the following sections. Other interesting, but less
popular, options include:

• Appcelerator Titanium: the original JSN offering; a lot of apps were built
using the platform over the years, but not much is heard about it today.

• Tabris.js: has a small following, but is a true JSN option.

The JSN approach was popularized by the open-source

(and commercial offering) Appcelerator Titanium way back in 2009.

Appcelerator struggled to build a large user base and a successful

profit model before finally selling themselves to Axway in 2016.

Appcelerator was advanced for the time, eventually expanding to

include a full back-end platform as well, but they struggled to get the

cross-platform part of JSN simplified until it was too late.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://www.nativescript.org/
https://facebook.github.io/react-native/
https://www.appcelerator.com/Titanium/
https://tabrisjs.com/

Progress 20

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

JavaScript-driven native apps are different, so there’s a learning curve for existing
web developers, but that’s not a reason not to write them. Building JSN apps
requires that you have access to skilled JavaScript developers; but with the current
state of web development you probably already have those. You’ll still need a few
native developers around, to help design app interfaces using native controls and
dealing with any internal APIs the JSN app uses. The frameworks and tooling are
all free, so there’s no capital investment to make. This explains why JSN is such
a popular approach to building native mobile applications.

Current JavaScript developers should be comfortable writing JSN apps, as
they use the modern web development approach that’s popular with many
frameworks in use today. These apps are JavaScript-focused rather than
HTML-focused and use ECMAScript modules to compartmentalize code.

From a tooling standpoint, JSN developers won’t spend much time in the native
platform’s IDEs; instead, they’ll use the regular, everyday web development tools
they use today. The most popular editor for JSN apps is Visual Studio Code; many
developers use the JetBrains WebStorm IDE, and developers who just like to work
in text editors use editors like Sublime Text.

For compilation and other project management tasks, the popular approaches
drive developers to command-line tools to interact with the framework and
platform (native mobile platform SDK) tooling.

NativeScript

NativeScript is an open-source framework for building cross platform mobile
applications for the Android and iOS platforms. The framework was originally

created by Telerik, and acquired by Progress in late 2014. NativeScript is an
open-source project with the full support of the Telerik/Progress team.

NativeScript isn’t a language, it’s a way to write native mobile applications using
JavaScript (and JavaScript-like languages like TypeScript). NativeScript applications
are native applications with native UI elements. NativeScript is unique in that it
allows developers to leverage Angular and Vue.js in their native applications,
leveraging the reactive UI capabilities of those frameworks within native apps.

NativeScript apps don’t leverage a JavaScript to Native bridge to access native
capabilities in a mobile app; instead, the framework is structured in such a way
as to enable direct execution of native APIs from JavaScript code.
The NativeScript framework ships with a large set of cross-platform abstractions
like Button, Camera, ListView and others to allow developers to create both native
iOS and Android versions from a single code base.

The framework found initial popularity with enterprise developers, partially
because of its less restrictive license agreement than React Native, although the
React project has since adopted a more friendly license. NativeScript is perceived
by the community to be a more open project; Progress works for the betterment
of the community and gets a return on its investment through NativeScript
developers using other products and services from the company.

To make it easy for developers to code (and debug) NativeScript apps, the
NativeScript community released the NativeScript extension for Visual Studio
Code. This free extension simplifies NativeScript development and delivers
interactive debugging of NativeScript apps on devices, device emulators and
simulators. Also, there are thousands of free and open-source plugins and app
templates available for use by NativeScript developers.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/
https://www.sublimetext.com/
https://www.nativescript.org/
https://angular.io/
https://vuejs.org/
https://www.nativescript.org/nativescript-for-visual-studio-code
https://www.nativescript.org/nativescript-for-visual-studio-code

Progress 21

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

React Native

React Native is an offshoot of Facebook’s React project; both React and
React Native are open-source projects that enable developers to code
reactive applications. React Native is the native mobile app implementation
of React where JSX, or plain JavaScript, is used to render native UI
elements in an app.

The React team has stumbled a bit with React and React Native:
• While both are open-source projects, Facebook has a somewhat

myopic view of the projects; they created them to help Facebook build
better apps, not because they wanted to do something good for the
community. They support the community, but the project exists
simply to make it easier for Facebook to build their internal and
external-facing apps and mobile apps.

• Facebook chose a restrictive license for both projects, limiting many
company’s interest in using the frameworks. They’ve since switched to
a more community friendly license, so there’s less legal risk in using the
frameworks for your projects.

• It isn’t easy to build a cross-platform native app using React Native.
The framework and community offer completely different UI
components for Android and iOS, meaning you must code the UI for
your apps separately. There are some common UI elements across
platforms, but app shell components (like toolbars and navbars) are
specific to a platform.

From a tooling standpoint, React and React Native are popular enough that
developers have multiple options to choose from:

• Deco IDE: A free, open-source React Native IDE for systems running

macOS from Airbnb (believe it or not - Airbnb acquired Deco, the
company that wrote the IDE).

• Nuclide: A React Native development environment running in the Atom
editor (from Github) for Linux and macOS. Windows is ‘supported’ but
not the full experience.

• React Native Extension for Visual Studio Code: Visual Studio Code is
the most popular text editor in the world. It’s free, and open-source
(it’s a fork of Github’s Atom editor) and is easy to use. The React Native
Extension adds full support for React Native applications, enabling
developers to code, test, and debug React Native applications.

Reasons to Build JavaScript-Driven Native Apps
• JSN apps provide an easier way to build native mobile apps

than writing native code.
• JSN apps enable development organizations to leverage their

existing web development skills.
• JSN apps are true native apps built using native UI components,

so users likely won’t know the difference.
• JSN platforms and tools are free, with a robust community

behind them enhancing the platform.

Reasons Not to Build JavaScript-Driven Native Apps
• You don’t trust JSN over pure native apps.
• You want the latest and greatest native capabilities, no matter what.
• Limited web development skills on-hand.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://facebook.github.io/react-native/
https://reactjs.org/

Progress 22

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Other Types of Native Apps

There are even more ways to craft your mobile apps; this section
highlights some popular ones.

Xamarin

Xamarin is a cross-platform development platform that enables developers
to code native mobile apps using Microsoft’s C# language with .NET as the
underlying framework. The platform supports Android, iOS, and Windows.
Xamarin is most popular in organizations with a big investment in Microsoft
technologies, and a lot of experienced C# and .NET developers.

Originally created by the team that created Mono (an open source alternative
to Microsoft’s .NET framework), Xamarin (the company) opened in 2011
and was acquired by Microsoft in 2016. Microsoft immediately open sourced
Xamarin and later released Xamarin Studio (Xamarin’s IDE) as Visual Studio for
Mac. The good news is that Xamarin, like NativeScript, has the full support of
a corporation behind it, even though the platform is free.

Xamarin apps are native apps, the app’s C# code is compiled into a format that
executes in a native runtime environment on the device. Developers create
an app’s UI declaratively or through XML; at runtime the app UI renders using
native UI components. Like with NativeScript and React Native, Xamarin apps
look and feel like native apps (because they are native apps with native UIs).

Another variant of this approach is Codename One, which takes a similar
approach, although using Java as the underlying language.

Flutter

Flutter is a recent offering from Google; the framework has been in beta for
quite a while, but may be released by the time you read this. Flutter is a bit like
NativeScript and React Native in that it lets you build cross platform apps using a
non-native language. For Flutter, Google chose to use the Dart language rather
than JavaScript. Flutter app UIs are built using a catalog of widgets Google
provides. Flutter apps are native apps, but don’t use native UI components.
This means that the apps will look like native apps, but may not deliver the
performance of native apps.

Flutter is still in beta, so it is too early to tell what’s going to happen with this
one. There’s a lot of interest in the market, and developers seem to be delivering
cool apps using the framework, but using it requires that you learn an obscure
language (Dart) and that may be a deal killer for many.

Reasons to Build Other Types of Native Mobile Apps
• Existing investment in the languages used by these platforms and

frameworks (C# or Dart).
• Interest in trying another way to build mobile apps.

Reasons Not to Build Other Types of Native Mobile Apps
• Vendor lock-in; using these proprietary, although open-source, approaches

means you can’t re-use your code if you switch approaches later.
• Use of obscure languages. C# is very popular with Microsoft’s customers

and for those using Mono or Microsoft’s newly open sourced .NET Core.
Dart isn’t even listed on Stack Overflow’s 2017 Developer Survey’s list of
popular languages (although it is 23rd on the list of most loved languages).

• In Flutter’s case, a new and unproven platform.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://visualstudio.microsoft.com/xamarin/
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://www.mono-project.com/
https://www.codenameone.com/
https://flutter.io/
https://www.dartlang.org/

Progress 23

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Making The Transition
You may be asking yourself, how do I pick a path and run with it?

For web apps, migrating to PWA is not a big deal, all you’re doing is adding
some additional functionality to your existing app, wrapping it in PWA
capabilities by adding a couple of files and some JavaScript code to your
app. The app runs as originally coded on older browsers, but on PWA-
capable browsers, the extra code kicks in and makes the app, well, better.

Can you migrate from native apps to PWA? Yes, absolutely - that’s what
we expect to happen for many apps. You won’t be able to use any of
your existing native code though. For apps that don’t need any special
capabilities provided by native APIs or native UI elements, ditching multiple
native apps (Android and iOS, for example) and replacing them with a
single PWA makes perfect sense. It’s much less expensive to deliver a web
app experience that covers both desktop and mobile users than building
web and native apps to cover the two audiences. You should assess your
apps for this today.

Assuming you’re already doing native development, hybrid is no longer
a viable approach, so the argument is probably for migrating to PWA or
JavaScript-driven Native.

If you’re currently building hybrid apps using Apache Cordova (or one of
its variants), the transition to JSN won’t be that hard. You’re already coding
apps using web technologies (HTML, CSS, JavaScript), you’ve selected your
favorite IDE for web development, and you’re comfortable using command-

line tools. If you’re using a modern web app development framework like
React, you’re already coding more JavaScript than HTML, so you’re in good
shape.

If you’re hand-crafting your web apps, or using an older web development
framework (like Bootstrap, Dojo Mobile, or jQuery Mobile), then you’ll
have some work to do. You and your development team will have to get
comfortable using modern, JavaScript-focused frameworks. Your tools will
stay the same, so there’s no adjustment there.

If your team is knee deep in native development for Android and iOS, then
the transition’s going to be a bit harder as most native developers don’t
have a lot of experience with web development and JavaScript. You’ll likely
keep your native development team where it is, maintaining your existing
native apps while you repurpose your web development team or bring on
web developers specifically for building mobile apps.

In the JSN world, your native developers are still an indispensable resource.
Even though you’re writing your native apps in JavaScript, you’ll still need
native developers (or at least native app designers) to help design and
implement your app UIs. An inherent understanding of how mobile apps
work is still important no matter which approach you’re using.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 24

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Testing Your Apps
Mobile device platforms provide their own proprietary test automation tools
for executing functional tests, but the market demands tools that enable
developers to code mobile app functional tests using a single set of tools
across multiple target platforms. This led to many proprietary and
open-source solutions, but ultimately open-source options won. Vendors
offering proprietary solutions quickly learned that they also needed to
support popular open-source solutions.

The leading open-source solution for web application testing is Selenium
WebDriver. To accommodate testing mobile apps, the community
implemented native mobile app testing using the WebDriver protocol
through the open-source Appium framework. Most native mobile app
testing today happens using Appium; if you’re looking for experienced
testing resources in the market, most will have experience with Appium.
All of the major testing automation tool and device lab vendors
support it as well.

Mobile app testing used to involve buying a whole bunch of mobile devices,
and moving them around as developers and testers needed them.
This led to many homegrown, but interesting, solutions to build device
labs - connecting devices to USB hubs and writing special software to
expose all of them to an automated test suite.

In today’s mobile development world, device labs are available as capable
open-source and commercial offerings from many vendors. You can
deploy internal device labs, buying devices, connecting them to a server

and making them available to developers and testers all throughout your
organization. Offerings in this space include the open-source Software Test
Farm, and commercial offerings such as Micro Focus Mobile Center, Mobile
Labs, and Telerik Test Studio® Mobile.

You’ll also find a multitude of device labs in the cloud where the vendor
buys the devices and leases them to you (either as devices dedicated to
you, or shared across multiple customers). Remote devices simply become
another execution target for your automated tests. Offerings in this space
include Amazon Device Farm, Microsoft’s App Center, and Perfecto Mobile.

Developers will still keep some popular devices around for debugging as
most device lab offerings don’t include the ability to use a remote device as
a debug target in platform IDEs. That will change, as there’s really no need
to keep two sets of devices: one for testing and another for debugging.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://openstf.io/
https://openstf.io/
https://software.microfocus.com/en-us/products/mobile-testing/overview
https://mobilelabsinc.com/
https://mobilelabsinc.com/
https://www.telerik.com/teststudio
https://aws.amazon.com/device-farm/
https://appcenter.ms/
https://www.perfecto.io/

Progress 25

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Building Your Mobile
App Back-End

Long gone are the days of building proprietary back-end services for your
mobile apps on-premises; it’s too hard and too expensive. Over the years,
the open-source community delivered a wide variety of robust, and very
capable tools developers use to code and assemble back-end infrastructure
for their apps. If you’re looking for a scalable SQL or NoSQL database
for your app, or an easy way to deliver microservices or authentication
capabilities to your app users, there’s multiple solutions available to you.

When it comes to scaling your infrastructure to accommodate your app’s
target audience, it no longer makes sense to deploy on-premises. Through
very capable cloud offerings from Amazon, Google, Microsoft, and others,
it’s very easy to package your app services into one or more containers,
and deploy them into an automatically scalable cloud environment.
As demand increases, these cloud environments scale up to support it,
scaling back down again as usage decreases - you only pay for the compute
and storage you use.

It’s no longer a million dollar venture to build and operate
a successful mobile app.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui

Progress 26

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Progress , Kendo UI, NativeScript & Telerik Test Studio Mobile are trademarks or registered trademarks of Progress Software Corporation
and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. Any other trademarks contained herein are the property
of their respective owners.

© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
Rev 2018/01 | RITM0022867

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying strategic
business applications. We enable customers and partners to deliver modern, high-impact
digital experiences with a fraction of the effort, time and cost. Progress offers powerful tools
for easily building adaptive user experiences across any type of device or touchpoint, award-
winning machine learning that enables cognitive capabilities to be a part of any application,
the flexibility of a serverless cloud to deploy modern apps, business rules, web content
management, plus leading data connectivity technology. Over 1,700 independent software
vendors, 100,000 enterprise customers, and two million developers rely on Progress to power
their applications. Learn about Progress at www.progress.com or +1-800-477-6473.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/progresssw

 youtube.com/progresssw
For regional international office locations and contact information,
please go to www.progress.com/worldwide

About the Author

Dan Wilson

Dan Wilson is the Senior Product Marketing Manager

for Mobility technology at Progress. Dan has extensive

experience growing technology focused products and

services. He got his first taste of fast-moving bleeding

edge tech when he joined his first start-up in 1999. An avid

participant in technology communities, he contributes

to a variety of open-source projects, and presents

at numerous developer conferences worldwide. Prior to

joining Progress, Dan founded and directed a consulting

practice for 10 years.

Conclusion
As we’ve shown, mobile apps are built using a completely different set of
technologies than they were just a few short years ago. Native apps were king,
but that’s no longer the case; they’re no longer necessary, but they’ll still be
around. Progressive Web Apps (PWA) make web applications feel like native
apps, so it’s easier now to leverage your existing web development skills to deliver
what mobile users want and need. If your app needs native UI capabilities,
and native performance, JavaScript-driven Native (JSN) is a capable alternative
and will be the way most native apps are written in the years to come.

https://www.progress.com/kendo-ui
https://www.telerik.com/kendo-ui
https://www.progress.com/
https://www.facebook.com/progresssw
https://twitter.com/progresssw
https://www.youtube.com/progresssw

